A Double-Objective Genetic Algorithm for Parity Declustering Optimization in Networked RAID
نویسندگان
چکیده
RAID, as a popular technology to improve the performance and reliability of storage system, has been used widely in computer industry. Recently, the technique of designing data layout in order to fit the requirements of networked storage is becoming a new challenge in this field. In this paper, we present a double-objective Genetic Algorithm for parity declustering optimization in networked RAID with a modified NSGA, we also take Distributed recovery workload and Distributed parity as two objects to find optimal data layout for parity declustering in networked RAID.
منابع مشابه
Designinga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملRow-Diagonal Parity for Double Disk Failure Correction (Awarded Best Paper!)
Row-Diagonal Parity (RDP) is a new algorithm for protecting against double disk failures. It stores all data unencoded, and uses only exclusive-or operations to compute parity. RDP is provably optimal in computational complexity, both during construction and reconstruction. Like other algorithms, it is optimal in the amount of redundant information stored and accessed. RDP works within a single...
متن کاملA Performance Evaluation of RAID Architectures
In today's computer systems, the disk I/O subsystem is often identiied as the major bottleneck to system performance. One proposed solution is the so-called redundant array of inexpensive disks (RAID). In this paper, we examine the performance of two of the most promising RAID architectures, the mirrored array and the rotated parity array. First, we propose several scheduling policies for the m...
متن کاملOptimization of a Container Ship Dimensions Using Multi-Objective Genetic Algorithm Method
Today, marine transportation has a significant role in global trade. The characteristics of the containerized shipping have made the number of container ships grow every day and made significant improvements in the construction and operation of these ships. In this research, the main dimensions of a container ship are optimized according to different objectives. This optimization aims to reduc...
متن کاملMulti-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM
In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...
متن کامل